Machine Learning with MATLAB

Course Highlights

This two-day course focuses on data analytics and machine learning techniques in MATLABĀ® using functionality within Statistics and Machine Learning Toolbox and Neural Network Toolbox. The course demonstrates the use of unsupervised learning to discover features in large data sets and supervised learning to build predictive models. Examples and exercises highlights techniques for visualization and evaluation of results. Topics include:

  • Organizing and preprocessing data
  • Clustering data
  • Creating classification models
  • Interpreting and evaluating models
  • Simplifying data sets
  • Using ensembles to improve model performance 


Prerequisites

Attended Comprehensive MATLAB or equivalent experience using MATLAB

Course Outline

Day 1 of 2

Importing and Organizing Data

Objective: Bring data into MATLAB and organize it for analysis, including normalizing data and removing observations with missing values.

  • Data types
  • Tables
  • Categorical data
  • Data preparation

Finding Natural Patterns in Data

Objective: Use unsupervised learning techniques to group observations based on a set of explanatory variables and discover natural patterns in a data set.

  • Unsupervised learning
  • Clustering methods
  • Cluster evaluation and interpretation

Building Classification Models

Objective: Use supervised learning techniques to perform predictive modelling for classification problems.  Evaluate the accuracy of a predictive model.

  • Supervised learning
  • Training and validation
  • Classification methods

Day 2 of 2

Improving Predictive Models

Objective: Reduce the dimensionality of a data set. Improve and simplify machine learning models.

  • Cross validation
  • Feature transformation
  • Feature selection
  • Ensemble learning

Building Regression Models

Objective: Use supervise learning techniques to perform predictive modeling for continuous response variables.

  • Parametric regression methods
  • Nonparametric regression methods
  • Evaluation of regression models

Creating Neural Networks

Objective: Create ad train neural networks for clustering and predictive modeling. Adjust network architecture to improve performance.

  • Clusterng with Self-Organizing Maps
  • Classification with feed-forward networks
  • Regression with feed-forward networks

DOWNLOAD REGISTRATION FORM

  ONLINE REGISTRATION

 

Course Registration Form


Course Title
Invalid Input

or Key in Your Own Title
Invalid Input

Course Start Date

Invalid Input

Sponsorship (*)
Invalid Input


Contact Person


Salutation(*)
Invalid Input

Name(*)
Invalid Input

Designation/ Department/ Division(*)
Invalid Input

Company(*)
Invalid Input

Billing Address (*)
Invalid Input

Street Address

(*)
Invalid Input

Street Address Line 2

City(*)
Invalid Input

State / Province(*)
Invalid Input

Postal / Zip Code(*)
Invalid Input

Telephone(*)
Invalid Input

Fax
Invalid Input

Email Address (*)
Invalid Input


Participant Details


Participant Salution 1
Invalid Input

Participant Name1
Invalid Input

Designation/ Department/ Division
Invalid Input

Telephone
Invalid Input

Fax
Invalid Input

Email Address
Invalid Input

Dietary Requirement
Invalid Input


Participant Salution 2
Invalid Input

Participant Name2
Invalid Input

Designation/ Department/ Division
Invalid Input

Telephone
Invalid Input

Fax
Invalid Input

Email Address
Invalid Input

Dietary Requirement
Invalid Input


Participant Salution 3
Invalid Input

Participant Name 3
Invalid Input

Designation/ Department/ Division
Invalid Input

Telephone
Invalid Input

Fax
Invalid Input

Email Address
Invalid Input

Dietary Requirement
Invalid Input


Payment Method(*)
Invalid Input

Cheque number
Invalid Input

PO Number
Invalid Input

How did you get to know about this programme?(*)
Invalid Input

Terms and Conditions
Invalid Input

Invalid Input